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Abstract

A standard problem in chemometrics is calibration, which aims at
predicting a scalar random variable Y from a spectrum X. However, if
the main problem is to predict Y from X, the physical data generation
mechanism is rather that the spectrum X (e.g., an absorbance spectrum)
is explained by Y , which is often a chemical variable (e.g., concentration
of a substance). Using this physical model X = r(Y ) + ǫ, we propose
a nonparametric approach to solve statistical calibration with functional
data and to predict Y from X. This approach is based on the conditional
probability density of X given Y , f(X|Y ): the proposed predictor takes
the form a weighted average of the observed values of Y , where the weights
are derived from an nonparametric estimate of f(X|Y ). The estimation of
f(X|Y ) is performed with standard nonparametric estimation methods:
in the present paper, the proposed estimator is explicitely given in the
realistic case where the error ǫ is supposed to fit a Gaussian distribution: r
is first estimated with a Nadaraya-Watson kernel estimate and the explicit
form of the f(X|Y ) in the Gaussian case is used to the estimate f̂(X|Y ).

The method is computationally simple and easy to implement and
does not require any specific assumptions on the conditional density of
Y given X, unlike most approach in functional regression. The consis-
tency of the approach can also be proved. Its efficiency is illustrated on
simulated datasets and compared to other approaches designed to solve
regression problems with functional predictors.
Keywords: calibration; functional regression; inverse regression; Gaus-
sian process

1 Introduction and notations

Statistical calibration plays a crucial role in many areas of tech-
nology such as pharmacology, neuroscience and chemometrics
[Osborne, 1991, Martens and Naes, 1989, Brown, 1993, Massart et al., 1997,
Lavine and Workman, 2002, Walters and Rizzuto, 1988]: an observable ran-
dom variable X is related to a variable of interest Y according to a statistical
model specified by a conditional probability density f (X/Y ). A sample D of
independent observations (x1, y1), ..., (xn, yn) of (X,Y ) is available (training

1



sample). The problem is to make statistical inferences about Y on the basis of
the given statistical model, the data D and X . In particular, in spectroscopy,
this framework is useful to model the case where some chemical variable
Y (e.g., concentration of a substance) has to be predicted from a digitized
function X (e.g., an absorbance spectrum). The conditional density f (X/Y )
thus represents the physical data generation mechanism in which the output
spectrum X is determined by the input chemical concentration Y , plus some
random perturbation mainly due to the measurement procedure.

Hereafter, we restrict ourselves to cases where the variable of interest Y takes
real values and where the predictor X lies in a functional space, e.g., L2, which
have already been studied in [Cuevas et al., 2002, Hernández et al., 2012] in the
case where Y is not supposed to be a random variable (fixed design).

2 Presentation of the method

The aforementionned problem is usually addressed through the estimation of
the regression function γ(x) = E(Y/X = x). In this paper, a new functional
calibration method to estimate γ(X) is introduced, which relies on assuming
the following regression model:

X = r(Y ) + ǫ, (1)

where ǫ is a random process (perturbation or noise), independent of Y , which is
supposed to fit a Gaussian distribution, and r is a function from R into X . Under
this Gaussian distribution assumption, the conditional distribution P (·�y) is
also a Gaussian distribution and is fully determined by its corresponding mean
function r(·) = E(X/Y = ·), and its covariance operator Γ (not depending on
y), which is a symmetric and positive Hilbert-Schmidt operator on the space
X . Thus, there exists an eigenvalue decomposition of Γ, (ϕj , λj)j≥1 such that
(λj)j is a decreasing sequence of positive real numbers, (ϕj)j are orthonormal
functions on X and Γ =

∑
j λjϕj ⊗ ϕj where ϕj ⊗ ϕj : h ∈ X → 〈ϕj , h〉ϕj .

Suppose that the following usual regularity condition holds

[Grenander, 1981, p. 271]: for each y ∈ R,
∑∞

j=1

r2j (y)

λj
< ∞, where

rj (y) = 〈r (y) , ϕj〉 for all j ≥ 1. Then, the density f (·�y) of P (·�y) with

respect to P0 has the explicit form: f (x�y) = exp
{∑∞

j=1
rj(y)
λj

(
xj − rj(y)

2

)}
,

where xj = 〈x, ϕj〉 for all j ≥ 1.
Under these assumptions, and the one that the distribution of Y has a density

fY (y) (with respect to the Lebesgue measure on R), the regression function can

be written as γ (x) =
∫
R
f(x�y)fY (y)ydy

fX (x) , where fX (x) =
∫
R
f (x�y) fY (y)dy.

which suggests the following (plug-in) estimate of γ (x):

γ̂ (x) =
1
n

∑n

i=1 f̂ (x�yi) yi

f̂X (x)
, (2)

where f̂ (x�y) is an estimate of the density f (x�y) of P (·�y) with respect to

the measure P0 and f̂X (x) is defined by f̂X(x) = 1
n

∑n

i=1 f̂(x/yi) and used to
estimate the density fX(x) of X .

Finally, an estimate f̂ (x�y) of f (x�y) can be obtained through the follow-
ing steps:
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1. For each t ∈ [0, 1], compute an estimate r̂ (·) (t) of the function r : y 7→
r(y)(t) with a smoothing kernel method:

r̂(y) =

∑n

i=1 K
(
yi−y

h

)
xi∑n

i=1 K
(
yi−y

h

) =
m̂(y)

f̂Y (y)
, (3)

where h is the bandwidth parameter, K an order k kernel, m̂(y) =
1
n

∑n

i=1 K
(
yi−y
h

)
xi and f̂Y (y) =

1
n

∑n

i=1 K
(
yi−y
h

)
.

2. Obtain estimates (ϕ̂j , λ̂j)j of the eigenfunctions and eigenvalues (ϕj , λj)j
of the covariance Γ on the basis of the empirical covariance Γ̂ of the resid-
uals êi = xi − r̂ (yi), that is, Γ̂ = 1

n

∑n

i=1 êi ⊗ êi.

3. Estimate f (x�y) by

f̂ (x�y) = exp





p∑

j=1

r̂j (y)

λ̂j

(
x̂j −

r̂j (y)

2

)
 , (4)

where r̂j (y) = 〈r̂(y), ϕ̂j〉, x̂j = 〈x, ϕ̂j〉 for all j ≥ 1 and p = p(n) is an
integer, smaller than n and such that p(n) → +∞.

Under technical assumptions, it can be proved that, for all x ∈ X such that
fX(x) > 0, we have:

lim
n→+∞

γ̂(x) =P γ(x).

3 Simulation

In this section, the feasibility and the performances of the nonparametric func-
tional regression method described in Section 2 is discussed through a simulation
study. A dataset was simulated in which values for the real random variable Y
were drawn from a uniform distribution in the interval [0, 10] and then, X was
generated by using the following model:

X = sin(Y )v1 + log(Y + 1)v5 + ǫ

where (vi)i≥1 is the trigonometric basis of X = L2([0, 1]) (i.e., v2k−1 =√
2 cos(2πkt), and v2k =

√
2 sin(2πkt)) and ǫ os a Gaussian process independent

of Y with zero mean and covariance operator Γe =
∑

j≥1
1
j
vj⊗vj . Training and

a test samples were simulated with respective sizes nL = 300 and nT = 200.
Figure 1 compares the true F (y)(t) to its estimated values for various values

of y (top) and for various values of t (bottom). The results are very satisfactory
given the fact that the data have a high level of noise (which clearly appears
in the bottom of this figure). Figure 2 shows the results of the steps 2-3 of the
estimation scheme: the estimated eigendecomposition of r is compared to the
true one, and the predicted value for Y are compared to the true ones, both on
training and test sets. The estimation of the eigendecomposition is also very
satisfactory despite the high level of noise, and the comparison between training
and test sets shows that the method does not overfit the data.
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Figure 1: Model M2. Top: True values (discontinuous lines) and estimates
(continuous lines) of F (y) for various values of y. Bottom: true values and
estimates of F (·)(t) for various values of t (bottom). The dots (bottom) are the
simulated data (xi(t))i in the training set.
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Figure 2: Model M2: (a-c): True (dashed line) and estimated eigenfunctions
(continuous line); (d): estimated vs. true eigenvalues and (e-f): predicted values
for Y vs. the true ones for training and test sets.
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